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for the second order wave equation∗

Heinz-Otto Kreiss†, N. Anders Petersson‡and Jacob Yström§
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Abstract

Stability theory and numerical experiments are presented for a finite difference
method that directly discretizes the Neumann problem for the second order wave
equation. Complex geometries are discretized using a Cartesian embedded boundary
technique. Both second and third order accurate approximations of the boundary
conditions are presented. Away from the boundary, the basic second order method
can be corrected to achieve fourth order spatial accuracy. To integrate in time, we
present both a second order and a fourth order accurate explicit method. The sta-
bility of the method is ensured by adding a small fourth order dissipation operator,
locally modified near the boundary to allow its application at all grid points inside
the computational domain. Numerical experiments demonstrate the accuracy and
long-time stability of the proposed method.

1 Introduction

There are many methods to solve the wave equation numerically. Methods based on
variational principles [1] have the advantage that the energy is conserved, but they are
not as efficient as difference methods. On the other hand, difference methods are prone to
instabilities. To avoid these one often has to add dissipative terms and the energy is not
conserved. Luckily, the instabilities are often weak and caused by high frequency waves
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which are not accurately represented anyway. Therefore, one constructs the dissipation
in such a way that it acts mainly only on these frequencies. We feel that the fixation on
energy conservation often goes too far. Large phase errors can destroy the solution as
well.

In this paper we continue the development of numerical methods that directly dis-
cretize the second order wave equation without first re-writing it as a system of first order
equations. In particular, we want to discuss the kind of instabilities that can arise and
how to control them. Since we treated the Dirichlet problem in [2], we consider here only
the Neumann problem

utt = ∆u+ F (x, t), x ∈ Ω, t > 0,

∂u

∂n
(x, t) = f(x, t), x ∈ Γ, t > 0, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded one or two-dimensional domain with boundary Γ.
We will discretize (1) on a Cartesian embedded boundary grid. The embedded bound-

ary technique for discretizing partial differential equations date back to the first order tech-
nique by Weller and Shortley [3] and the higher order generalizations of Collatz [4]. More
recently, several embedded boundary methods have been presented for various types of
partial differential equations. For example, Pember et al. [5] used a Cartesian grid method
for solving the time-dependent equations of gas dynamics. Zhang and LeVeque [6] solved
the acoustic wave equation with discontinuous coefficients written as a first order system.
They derived special difference stencils that satisfy the jump conditions at the interior
interfaces, where the coefficients are discontinuous. A staggered grid method was used
by Ditkowski, Dridi and Hesthaven [7] for solving Maxwell’s equations on a Cartesian
grid. The methods described in these papers all solve first order systems (in time). For
Poisson’s equation with Dirichlet boundary conditions, Johansen and Colella [8] derived
an embedded boundary technique based on the finite volume method combined with
multi-grid.

We proceed by presenting the highlights of our proposed method. The domain Ω
is covered by a Cartesian grid with step size h where the grid points are located at
xi,j = (xi, yj)

T = (ih, jh)T , and the boundary Γ is allowed to cut through the grid in an
arbitrary manner, see Figure 1. Let tn = nk, k = 0, 1, 2, . . . denote the time-discretization
with step size k, and let vni,j be the difference approximation of u(xi, yj, tn). A second
order accurate approximation of the Laplacian of u is given by

∆hv
n
i,j =:

1

h2
(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j). (2)

To be able to evaluate ∆hv
n
i,j at all grid points inside Ω, we use ghost points just outside

the domain. Consider the case in Figure 1 where the grid point xi,j is outside of Ω,
but xi,j+1 is inside. To aid in the approximation of the Neumann boundary condition,
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Figure 1: The points used for discretizing the Neumann boundary condition.

we construct a third order accurate interpolant between three points along the normal:
(0, vni,j), (ξI , v

n
I ), (ξII , v

n
II). Here ξI and ξII = 2ξI are the distances between xi,j, along the

normal going through that point, and the horizontal grid lines yj+1 and yj+2, respectively.
After differentiating the interpolant, we get a second order accurate approximation of the
(outward) normal derivative

D(2)
n vni,j =: g0v

n
i,j + gIv

n
I + gIIv

n
II =

∂v

∂n
(xΓ

i,j, tn) +O(h2), (3)

where x
Γ
i,j is the intersection point between the boundary and the normal going through

xi,j . The coefficients gj are given by

g0 =
3ξI − 2ξΓ

2ξ2I
, gI =

2ξΓ − 2ξI
ξ2I

, gII =
ξI − 2ξΓ

2ξ2I
, (4)

where ξΓ is the distance between xi,j and the boundary. Since the coefficients gj = O(1/h),
we need to use third order accurate approximations for vnI and vnII . Here we use Lagrangian
interpolation along the grid lines yj+1 and yj+2:

vnI = c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1,

vnII = c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2.

The resulting formula for D
(2)
n vi,j holds when the angle θ between the x-axis and the

normal satisfies π/4 ≤ θ ≤ π/2. When 0 ≤ θ ≤ π/4, the horizontal interpolations to
obtain vI and vII are replaced by corresponding interpolations in the vertical direction.
The expressions in the remaining three quadrants are simply obtained by reflections in
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index space, leading to a total of 8 different cases to treat all possible directions of the
boundary.

The second order boundary condition formula results in an overall second order scheme,
but since the boundary condition is discretized using one-sided differences, the truncation
error will be larger at the boundary than in the interior, where a centered scheme is used.
We can easily modify the above technique to construct a third order accurate formula
D
(3)
n vi,j to make the coefficient in front of the leading second order truncation error term

smaller. In this case, three interior values vI , vII , and vIII are interpolated using fourth
order Lagrangian interpolation along three contiguous grid lines. Hence this stencil in-
volves 12 interior points. The third order boundary condition formula works nicely for
well resolved geometries where there are enough interior points. For less resolved geome-
tries, or for very thin regions where two parts of the boundary are close to each other, we
will use the second order boundary condition formula.

All ghost point values in (2) can be eliminated using formulas of the type (3). The dis-
crete approximation of the Laplacian of u (for functions subject to the boundary condition
∂u/∂n = f(xΓ, t)) can then be written in matrix form

∆u = Av + b(t) +O(h2). (5)

Here the array v contains the solution at all grid points inside Ω and b(t) is the discrete
counterpart of the boundary forcing f(xΓ, t).

Because of the discretized form of the Neumann boundary condition, the matrix A
will not be symmetric. As a result, the basic scheme proposed in [2],

v
n+1 − 2vn + v

n−1

k2
= Av

n + b(tn) + F (tn),

suffers from a weak instability (here F (tn) is the discretized version of the internal forcing
F (x, tn)). The definition of a weak instability will be given in Section 4. To under-
stand the loss of stability, we analyze a number of model problems. We start with the
one-dimensional half-plane (§ 2) and strip (§ 3) problems, proving that the difference
approximation is stable in these cases, without damping. The two-dimensional case is
analyzed in Sections 4-6, where we show that the tangential derivatives that occur in the
truncation error of the boundary condition can lead to instabilities, both for the half-plane
and strip problems. We also show that our scheme can be stabilized by a small fourth
order artificial dissipation of the type h3∆2

vt. However, a centered finite difference sten-
cil such as ∆2

hvt is wider than the discretized Laplacian, so it is not possible to use this
damping term all the way up to the boundary (without adding extra numerical boundary
conditions). Instead, we suggest using the discrete operator h3AT (A(vn−v

n−1)/k) which
can be applied all the way up to the boundary. Away from the boundary, it is equivalent
to ∆2

h(v
n − v

n−1)/k. For the general case with inhomogeneous boundary conditions and
internal forcing, the proposed scheme becomes

v
n+1 − 2vn + v

n−1

k2
= Av

n + b(tn) + F (tn)− αh3AT

(

A(vn − v
n−1)/k +

db

dt
(tn)

)

. (6)
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We note that the sparse structure of A can be used to efficiently evaluate both Av and
AT

v, without the need to store the matrix explicitly, see appendix A.
In Section 7.1, we will demonstrate that this discretization does not suffer from the

“small cell” stiffness problem that commonly is encountered when the finite volume
method is used on a Cartesian grid with an embedded boundary, cf. [9]. We will also
show that the damping term inflicts an O(h2) perturbation of the undamped scheme
(§ 7.2), and by numerical experiments in Section 8 we will demonstrate that it suffices to
take α very small (of the order O(10−3)). Hence, the resulting numerical solution will be
second order accurate and the scheme is well suited for long time calculations where it
is important to keep damping to a minimum. In Section 7.3, we also present correction
terms that optionally can be added to make the scheme fourth order accurate in time
and space (away from the boundary). A number of numerical examples are presented in
Section 8 to asses the accuracy and long time stability of the method with and without
fourth order corrections, both for smooth boundaries and in the presence of corners. The
proposed method is finally used for a resonance analysis of wave propagation in a harbor.

2 The one-dimensional half-plane problem

We start with the half-plane problem

utt = uxx, 0 ≤ x <∞, t ≥ 0,

u(x, 0) = f(x), (7)

with boundary conditions

ux(0, t) = 0, lim
x→∞

u(x, t) = 0. (8)

Let xν = νh, h > 0, denote the grid points, v(xν , t) be a grid function, and D+v(xν , t) =
(

v(xν+1, t)−v(xν , t)
)

/h represent the usual forward difference operator. We want to solve
(7),(8) by the simplest central difference approximation

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . ,

v(xν , 0) = f(xν), (9)

with boundary conditions

D+v(0, t) + αhD2
+v(0, t) + βh2D3

+v(0, t) = 0, lim
xν→∞

v(xν , t) = 0. (10)

If we set α = β = 0 or α = − 1
2
, β = 0, we obtain a first order or second order accurate

approximation, respectively. In these cases we can prove stability by energy estimates,
see [2]. If α = − 1

2
and β = 1

3
, we obtain the third order accurate approximation

D+v(0, t)−
1

2
hD2

+v(0, t) +
1

3
h2D3

+v(0, t) = 0. (11)
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In this case, we do not know how to prove stability by energy estimates. Instead, we will
use mode analysis.

For simplicity, we keep time continuous. In actual calculations we use the method of
lines. In [10] we have shown that the stability of the semi-discrete approximation implies
the stability of the totally discretized method for most standard methods of lines.

By stability we mean here that there are no exponentially growing solutions. Therefore,
a test for stability is that (9),(10) has no solutions of type

v(xν , t) = estϕ(xν), |ϕ(xν)| ≤ const. (12)

for Re s > 0, satisfying the boundary condition (10). Introducing (12) into (9) gives us

h2s2ϕ(xν) = h2D+D−ϕ(xν) = ϕ(xν + h)− 2ϕ(xν) + ϕ(xν − h). (13)

Since (13) is a difference equation with constant coefficients, its general solution is of the
form

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2, (14)

where κ1, κ2 are solutions of the characteristic equation

(κ− 1)2 − h2s2κ = 0. (15)

We have κ2 = κ−11 and we simplify the notation by removing the index of the roots and
set κ1 = κ, κ2 = κ−1.

Lemma 1 For |hs| << 1, the roots of (15) are of the form

κ = 1− hs+ h2s2

2
+O(h3s3) = e−hs(1+O(h2s2)),

κ−1 = 1 + hs+ h2s2

2
+O(h3s3) = ehs(1+O(h

2s2)).
(16)

Also, for Re s > 0, (15) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.

Proof. (16) follows by asymptotic expansion of the roots. (It is not surprising: The
corresponding solutions of (7) are e−sx, esx and (9) is second order accurate.)

Assume that (15) has a solution

|κ| = 1, i.e., κ = eiτ , τ real,

for some s with Re s > 0. Then (15) becomes

−4 sin2(τ/2) = h2s2.

Therefore, Re s = 0, which is a contradiction.
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For hs→∞, s > 0 real, the solutions of (15) satisfy

lim
hs→∞

κ = 0, lim
hs→∞

κ−1 =∞.

Since the roots are smooth functions of s and |κ| 6= 1 for Re s > 0, we always have
|κ| < 1, |κ−1| > 1. This proves the lemma.

The lemma shows that the solution can only stay bounded in space if σ2 = 0, so

ϕ(xν) = σ1κ
ν , |κ| < 1. (17)

Introducing (17) into the boundary condition (10) gives us

(κ− 1)
(

1 + α(κ− 1) + β(κ− 1)2
)

= 0. (18)

The cubic equation (18) has three roots κ = κj, j = 1, 2, 3, which lead to possible
solutions of (12). We obtain the corresponding s from the characteristic equation (15),
i.e.,

hs = ±
√

(κ− 1)2

κ
= ±(κ1/2 − κ−1/2). (19)

The first root, κ1 = 1, does not generate a growing solution. In fact, any root with |κ| = 1,
has this property, since inserting κ = eiξ into (19) yields

hs = ±2i sin ξ
2
, i.e., Re s = 0. (20)

Roots with |κ| > 1, are not permissible because ϕ(xν) = σκν becomes unbounded as
ν → ∞ and violates the boundary condition (10). However, solutions of the type, κ =
eiξ−η, ξ, η real, η > 0 correspond to

h Re s = ±(e−η/2 − eη/2) cos ξ
2
,

which grows rapidly in time if ξ 6= π + 2nπ, n = 0, 1, 2, . . .. These solutions decay
rapidly away from the boundary, and we therefore denote these solutions boundary layer
instabilities.

Often one tries to stabilize numerical methods by adding a dissipative term to the
difference equation. Instead of (9) we then consider

vtt = D+D−v + σhD+D−vt.

For boundary layer instabilities, this does not work. If the boundary layer is oscillatory,
then one can stabilize the method but the amount of necessary dissipation is, in general,
too large for accuracy reasons. Therefore, the only useful boundary condition approxi-
mations are those where |κ2| > 1, |κ3| > 1. While this condition is violated for general
coefficients α, β, it is easy to see that the third order approximation (11) satisfies the
requirement. That approximation has α = − 1

2
, β = 1

3
, and (18) has the solutions

κ1 = 1, κ2,3 =
7

4
± i
√

3− 9

16
, |κ2,3| =

√
88

4
>

9

4
. (21)
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3 The one-dimensional strip problem

We consider now the wave equation (7) for 0 ≤ x ≤ 1, t ≥ 0. As boundary conditions we
use

ux(0, t) = 0, u(1, t) = 0. (22)

We approximate the continuous problem by

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . , N − 1, Nh = 1,

v(xν , 0) = f(xν),
(23)

with boundary conditions

Lhv =: D+v(0, t)− 1
2
hD2

+v(0, t) +
1
3
h2D3

+v(0, t) = 0,

v(1, t) = 0.
(24)

For the analytic problem (7),(22) there is an energy estimate. Also, we can represent the
solution by an eigenfunction expansion

u(x, t) =
∞
∑

j=0

eλjtψj(x).

The eigenvalues λj are purely imaginary and are solutions of the eigenvalue problem

λ2ψ = ψxx, ψx(0) = ψ(1) = 0. (25)

Again we want to investigate whether (23),(24) has exponentially growing solutions. We
make the ansatz (12) and obtain

h2s2ϕ(xν) = h2D+D−ϕ(xν),

Lhϕ = 0, ϕ(1) = 0,
(26)

and start our discussion with the case that |sh| << 1. The discretized eigenvalue problem
(26) is an approximation of the continuous problem (25) and since the difference stencil is
compact, solutions of (26) with |sh| << 1 are close to solutions of the continuous problem,
see Kreiss [11]. The question is whether the eigenvalues also are purely imaginary.

The general solution of (26) is

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2, (27)

where κj, j = 1, 2, are the solutions of the characteristic equation (15)

κ2 − (2 + h2s2)κ+ 1 = 0.
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Therefore κ1κ2 = 1, i.e., κ2 = κ−11 . By (16) we can write

κ1 = ehs̃, κ2 = e−hs̃, s̃ =: s(1 +O(h2s2)),

and
ϕ(x) = σ1e

s̃x + σ2e
−s̃x, x = xν , ν = 0, 1, 2, . . . , N, Nh = 1.

For smooth functions w(x),

Lhw = wx(0) + γ4h
3wxxxx(0) + γ5h

4wxxxxx(0) +O(h5).

Therefore, introducing (27) into the boundary conditions gives us

σ1(1 + γ̃4h
3s̃3 + γ̃5h

4s̃4)− σ2(1− γ̃4h3s̃3 + γ̃5h
4s̃4) = 0, (28)

σ1e
s̃ + σ2e

−s̃ = 0. (29)

Here
γ̃4 = γ4 + γ41s̃

2h2 + . . . , γ̃5 = γ5 + γ51s̃
2h2 + . . . ,

account for the higher order terms.
There is a nontrivial solution of (28),(29) if and only if

σ2
σ1

= −e2s̃ = 1 + γ̃5h
4s̃4 + γ̃4h

3s̃3

1 + γ̃5h4s̃4 − γ̃4h3s̃3
.

If |sh| << 1, then the eigenvalues of (26) converge to the eigenvalues λn = i(π
2
+ nπ) of

(25) where |hλn| << 1. Thus we make the ansatz

hs̃ = hλn + ihτ = ihµn + ihτ, µn =
π

2
+ nπ,

and obtain

e2iτ =
1 + γ̃5

(

(µn + τ)h
)4 − iγ̃4

(

(µn + τ)h
)3

1 + γ̃5
(

(µn + τ)h
)4

+ iγ̃4
(

(µn + τ)h
)3 =: S. (30)

Since γ̃4, γ̃5 are real and bounded and µn is real, an asymptotic expansion of |S| in h
yields

|S| = 1 +O(|τ |3h3) = e2iτ .

Hence, τ must be real-valued, that is, s̃must be purely imaginary. By the above expansion,
it follows that there is a unique solution close to λn with

iτ = iγ̃4(µnh)
3 +O

(

(µnh)
4
)

, τ real.

Thus the eigenvalues of the discrete problem are purely imaginary, provided |sh| << 1.
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Now we consider the case that |sh| ≥ δ̃ > 0. The characteristic equation (15) implies

|κ− 1|2 = |sh|2|κ| ≥ δ̃2|κ|.

Hence, when |κ| ≥ 1/2,
|κ− 1| ≥ δ̃/

√
2 = δ > 0.

Furthermore, when |κ| ≤ 1/2, the triangle inequality gives |1− κ| ≥ 1− |κ| ≥ 1/2. Thus
κ cannot be arbitrary close to 1 when |sh| ≥ δ̃ > 0.

In the following, we use the representation

ϕ(xν) = σ1κ
+ν + σ2κ

−ν , |κ| ≥ 1.

The discrete eigenvalue problem (26) has a nontrivial solution if and only if

σ1Ph(κ− 1) + σ2Ph(κ
−1 − 1) = 0, σ1κ

N + σ2κ
−N = 0,

i.e.,
κNPh(κ

−1 − 1)− κ−NPh(κ− 1) = 0. (31)

has a nontrivial solution. Here

Ph(y) = y − 1

2
y2 +

1

3
y3 ≡ y(y − y2)(y − y3), y2,3 =

3

4
± i
√

3− 9

16
. (32)

Lemma 2 There is a constant C > 0 such that (31) has no solution for

|κ| ≥ eCh

Proof. Assume that |κ| = eCh. By (32), the zeros of Ph(y) are y = 0 and y = y2,3 with
Re y2,3 = 3/4. For |κ− 1| ≥ δ and |κ| ≥ 1, κ−1 is inside the unit circle, but bounded away
from 1. Therefore, κ−1 − 1 is inside a unit circle centered at −1, but bounded away from
zero. There are no zeros of Ph in this region and we have

min
|κ|≥1, |κ−1|≥δ

|Ph

(

κ−1 − 1
)

| ≥ d > 0.

Since |κ|N = eC , and κ−3Ph(κ− 1) ≤ const. for |κ| ≥ 1,

|κ−NPh(κ− 1)| = |κ−N+3| |κ−3Ph(κ− 1)| ≤ const. e−C ,

|κNPh

(

κ−1 − 1
)

| ≥ deC .

Hence, equation (31) has no solution if C is sufficiently large and the lemma follows.
We can now prove

Theorem 1 For sufficiently small h, all eigenvalues s of (26) are purely imaginary and
the discrete problem (23),(24) is stable.
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Proof. We have already shown that all eigenvalues with |sh| ¿ 1 are purely imaginary.
For |sh| ≥ δ̃, the eigenvalue problem (26) has a solution if and only if (31) has a solution
with |κ| ≥ 1 and |κ− 1| ≥ δ. We can write (31) in the form

Q(κ) =:
Ph(κ

−1 − 1)

Ph(κ− 1)
= κ−2N . (33)

By noting that Ph(y) = Ph(y) and that eiξ − 1 = e−iξ − 1, it is easy to see that

|Q(eiξ)| = 1,
∣

∣(eiξ)−2N
∣

∣ = 1.

Now consider κ = eiξ+ηh, 0 ≤ η ≤ C. Then,

|Q(eiξ+ηh)| = 1 +O(ηh), but
∣

∣(eiξ+ηh)−2N
∣

∣ = e−2η. (34)

For sufficiently small h, (33) can only have solutions for η = 0 since only the left hand
side of (34) scales with h. Lemma 2 tells us that (31) has no solution for |κ| ≥ eCh, and
we conclude that all solutions of (31) must have |κ| = 1. By solving the characteristic
equation (15) for s and setting κ = eiξ, we get (20) which shows that all eigenvalues are
purely imaginary.

Since we can represent the solution of the discrete problem (23),(24) in an eigenfunc-
tion expansion where all eigenvalues are purely imaginary, there can be no exponentially
growing solutions and we conclude that the discrete problem is stable.

4 A continuous two-dimensional model problem

We now start our discussion of two-dimensional problems. The results from the one-
dimensional model seems to indicate that we need only to avoid boundary instabilities.
However, there are also highly oscillatory instabilities which can be controlled by small
amounts of dissipation. As will be demonstrated in Section 5, our embedded boundary
approximation of the Neumann condition in general two-dimensional domains introduces
truncation errors in both the tangential and normal directions. To illustrate the type
of instabilities that the tangential terms can give, we study the solutions of the wave
equation with perturbed Neumann conditions. We start with the half-plane problem

utt = uxx + uyy, 0 ≤ x <∞, −∞ < y <∞, t ≥ 0,

ux(0, y, t) = εuy(0, y, t),
(35)

where ε is a real parameter. It turns out the size of ε is of minor importance, and we
will for simplicity consider the case ε = 1. Corresponding to Section 2, the problem is
unstable if we can find exponentially growing solutions of type

u = est+iωyϕ(x), Re s > 0, |ϕ(x)| ≤ const. , ω real. (36)
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Introducing (36) into (35) gives us the eigenvalue problem for s

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), |ϕ(x)| ≤ const.
(37)

Since (37) is a differential equation with constant coefficients, its general solution is

ϕ(x) = σ1e
λx + σ2e

−λx, λ =
√
s2 + ω2, Reλ ≥ 0. (38)

Clearly, Reλ > 0 for Re s > 0. Therefore, |ϕ(x)| ≤ const. if and only if σ1 = 0, i.e.,

ϕ(x) = σ2e
−λx, Reλ > 0. (39)

Introducing (39) into the boundary condition gives us

−λ = iω.

Since Reλ > 0, there are no solutions of type (36). However, let s = i
√
2ω + η, η > 0.

Solving (38) for λ gives
lim
η→0

λ = i|ω|.

Thus, for ω < 0, there is a solution of type (36) but with Re s = 0,

u = ei
√
2ωt−i|ω|(x+y). (40)

There is no exponential growth in time and, for large ω, the solutions are highly oscil-
latory in space. Furthermore, there is no decay in the x-direction. Hence, s = i

√
2ω

is a generalized eigenvalue (see [12] for a definition) which forecasts instabilities for the
corresponding problem on a bounded domain.

To demonstrate these instabilities, we next consider the strip problem,

utt = uxx + uyy, 0 ≤ x ≤ 1, −∞ < y <∞, t ≥ 0,

ux(0, y, t) = uy(0, y, t), ux(1, t) = 0.
(41)

Again, we construct solutions of the type (36). Instead of (37), we obtain now the eigen-
value problem

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), ϕx(1) = 0.
(42)

Introducing the general solution (38) into the boundary conditions shows that (42) has a
solution if

λ− iω
λ+ iω

= e2λ. (43)
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Theorem 2 The strip problem (41) is unstable. For large |ω| there are solutions of the
type (36) with

Re s ≈ 1√
8
log(2|ω|), i.e., e(Re s)t = (2|ω|)t/

√
8. (44)

Proof. Let
λ = λr + iλi,

and assume that
λi = −ω, |ω| À 1.

By (43),
λr − 2iω

λr

= e2λre−2iω. (45)

Take |ω| large and argω such that the argument of the left and right hand side of (45)
match. The modulus matches if

λ2r + 4ω2

λ2r
= e4λr ,

i.e., to the highest order in ω,

λr ≈
1

2
log(2|ω|).

Thus,
s = ±

√
−ω2 + λ2 ≈ ±

√

−2ω2 − iω log(2|ω|),
and (44) follows.

The above example shows that the stability of the left and right half-plane problems
is not enough to insure stability for the strip problem. The reason is that the generalized
eigenfunctions (40) do not decay in space but are reflected back and forth between the
boundaries at x = 0, 1, respectively. Every time they hit the left boundary they are
amplified. These are highly oscillatory instabilities and we will see that they can easily
be controlled by small amounts of dissipation. This example also illustrates that non-
dissipative difference methods of our type are prone to weak instabilities, i.e., instabilities
that only grow algebraically in time (see (44)). Note that a weak instability also occurs if
the tangential derivative in (35) is replaced by a higher order, odd, tangential derivative.

To demonstrate a strong instability, we study the half-plane problem where the bound-
ary condition in (35) is replaced by

ux = βuyy, x = 0, (46)

where β is a constant. As before, we look for solutions of the type (36) and using the
same arguments as above, we know the solution must have the form (39). Inserting this
ansatz into the boundary condition (46) gives

−λ = −βω2. (47)
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Since Reλ > 0, there are no solutions with Re s > 0 when β < 0. Next we investigate
if there are any generalized eigenvalues. Setting s = iτ yields λ =

√
−τ 2 + ω2, so −λ is

either real and negative, or purely imaginary. When β < 0, the right hand side of (47) is
always real and positive, and we conclude that there are not any generalized eigenvalues
either. Hence, the case β < 0 is stable.

When β > 0 and ω is large, (47) is solved by

s ≈ βω2,

and inserting (47) into (39) gives

u = eβω
2t−βω2x+iωy, ω large, β > 0.

Hence, these solutions have a thin boundary layer in space and grow exponentially in
time. This is a strong instability. As we shall see in Section 5, this type of instability can
only be controlled by dissipation when the coefficient β is small. Perturbing the Neumann
condition by a higher order, even, tangential derivative results in the same behavior, i.e.,
the stability depends on the sign of the coefficient.

5 The discrete half-plane problem in two dimensions

We consider next the two-dimensional half-plane problem for

utt = uxx + uyy, 0 ≤ x <∞, −∞ < y <∞, t ≥ 0, (48)

with the boundary condition

ux(0, y, t) = 0, |u(x, y, t)| ≤ const. , (49)

and approximate it by
vtt = (D+xD−x +D+yD−y)v, (50)

with the third order accurate boundary condition (11)

Lhv(0, y, t) = 0, |v(x, y, t)| ≤ const. (51)

Here v is a discrete function varying on a grid

{xν = νh, yµ = µh}, ν = 0, 1, 2, . . . , µ = 0,±1,±2, . . . ..

We Fourier transform the difference equation with respect to y and obtain

v̂tt =
(

D+xD−x − 4
h2 sin

2 (ωh/2)
)

v̂,

Lhv̂(0, ω, t) = 0, |v̂(x, ω, t)| ≤ const.
(52)
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Thus, we obtain a 1D problem for every fixed ω and can apply mode analysis as before.
Then

v̂(xν , t) = estϕ(xν), Re s > 0,

is a solution of (52) if there are solutions ϕ(xν) of the eigenvalue problem

(

s2 +
4

h2
sin2(ωh/2)

)

ϕ = D+xD−xϕ, (53)

Lhϕ = 0, |ϕ(x)| ≤ const. , (54)

with Re s > 0. The eigenvalue problem (53),(54) is of the same type as for the one-
dimensional half-plane problem in section 2. In particular, the general solution has the
form (14) where κ now is a solution of the two-dimensional characteristic equation

(κ− 1)2 −
(

s2h2 + 4 sin2(ωh/2)
)

κ = 0. (55)

It is straight forward to show that this characteristic equation has the same essential
properties as in the one-dimensional case. To be precise, we have

Lemma 3 For |hs| << 1 and |hω| << 1, the roots of (55) are of the form

κ = 1− hλ+
h2λ2

2
+O(h3λ3) = e−hλ(1+O(h2λ2)),

κ−1 = 1 + hλ+
h2λ2

2
+O(h3λ3) = ehλ(1+O(h

2λ2)),

where λ =
√
s2 + ω2, Reλ > 0 for Re s > 0. Also, for each fixed ω and for Re s > 0,

(55) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.

Proof. Follows by straight forward generalization of Lemma 1.

Since the boundary conditions are the same as in the one-dimensional case, we can use
the same arguments as in Section 2 to show that there are no solutions of (53),(54) for
Re s > 0, which implies that there are no exponentially growing solutions of (52). Note
that for the Neumann boundary condition approximation (51), the boundary normal is
aligned with the x-direction.

Our goal is to construct stable difference approximations for general domains. In this
case the boundary condition for the differential equation is

∂u/∂n = 0, ∂/∂n : derivative normal to the boundary, (56)

and in general the normal is not aligned with the mesh. In the following, we will study the
continuous boundary conditions perturbed by the leading truncation error terms. In the
literature this technique is often used for the Cauchy or spatially periodic problems and the
truncation terms appear only in the differential equation. The obtained equation is often
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called the “modified equation”, see for example [13] or [14]. Here we use the technique
to analyze the influence of truncation errors in the boundary conditions. The modified
equation is a more accurate description of the discretized problem than the continuous
problem. Or rephrased, the numerical solution approximates the modified equation to a
higher order of accuracy than the continuous problem. However, the modified equation
can only model low and intermediate frequencies in the discrete solution, and we rely on
the dissipation to control the highest frequencies.

In Section 4 we have discussed half-plane and strip problems. The reason is this: For
analytic initial boundary value problems where there are no direct energy estimates, the
study of wellposedness can be reduced to the study of half-plane and strip problems. This
is done in the following way. In the neighborhood of every boundary point P with tangent
Tg we use a locally smooth map to transform the curved boundary locally onto Tg. Then
we study the half-plane problem with Tg as the boundary. After freezing the variable
coefficients we can solve the problem by Fourier-Laplace transform. If for all these half-
plane problems there are no eigenvalues or generalized eigenvalues s with Re s ≥ 0, then
the original problem is well posed, see Kreiss and Lorenz [15].

We shall now apply this technique to analyze the stability of the discrete problem.
Let the angle θ between the outward normal and the x-axis be defined as in Figure 1. We
consider the differential equation on the half-plane n · x ≤ 0, i.e.,

x cos θ + y sin θ ≥ 0. (57)

To be able to calculate the truncation error of the discrete boundary condition we assume
that the solution u of the differential equation is smooth and decays rapidly to zero for
x2 + y2 → ∞, in the half-plane (57). Also, we extend it smoothly beyond the boundary
such that the extended u decays rapidly to zero for x2 + y2 →∞ in the whole plane.

The truncation error in the third order Neumann boundary condition satisfies (π/4 ≤
θ ≤ π/2)

D(3)
n u(xi, yj) =

∂u

∂n
(xΓ

i,j) + C1h
4 ∂

5u

∂n5
(xΓ

i,j) + C2h
3 ∂

4u

∂n4
(xΓ

i,j) + h4R1 + h3R2 +O(h5).

Here,

R1 =
3
∑

ν=1

C1ν
∂5u(x̃ν , yj+ν)

∂x5
, R2 =

3
∑

ν=1

C2ν
∂4u(x̃ν , yj+ν)

∂x4
.

The terms in R1, R2 originate from interpolation errors in vI , vII , and vIII , respectively.
Derivatives with respect to x and y can be related to normal (∂/∂n) and tangential

(∂/∂σ) derivatives. We have

∂

∂x
= − sin θ

∂

∂σ
− cos θ

∂

∂n
,

∂

∂y
= cos θ

∂

∂σ
− sin θ

∂

∂n
.
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We can also use Taylor expansions to express derivatives at (x̃ν , yj+ν) in terms of deriva-
tives at the boundary point xΓij. After some calculations we obtain

D(3)
n u(xi, yj) = (1 +R)

∂u

∂n
−
(

h4β1
∂5u

∂σ5
+ h3β2

∂4u

∂σ4

)

+O
(

h5
∂6u

∂n6−j∂σj

)

.

Here R is an operator of the form

R =
∑

p+q≥3
βpqh

p+q ∂p+q

∂np∂σq
.

We can write the half-plane problem for the differential equation in the form

∂2u

∂t2
=
∂2u

∂n2
+
∂2u

∂σ2
, n ≥ 0, −∞ < σ <∞,

∂u

∂n
= 0, for n = 0.

After Fourier transforming with respect to σ and Laplace transforming with respect to t
we obtain

∂2û

∂n2
= (s2 + ω2)û.

Thus,

û = e−
√
s2+ω2 nu0(s, ω),

∂û

∂n
= −
√
s2 + ω2û

and the Fourier-Laplace transform of ∂/∂n is −
√
s2 + ω2. After freezing the coefficients,

we Fourier-Laplace transform the truncation error and obtain

D̂(3)
n = −(1 + R̂)

√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4) +O

(

(|ω|+ |s|)6h5
)

.

Here,

R̂ =
∑

p+q≥3
βpq

(

−
√

(hs)2 + (hω)2
)p

(ihω)q = O
(

(|hs|+ |hω|)3
)

.

For |hs|+ |hω| sufficiently small, ‖R̂‖ ≤ 1/2, and we can write

D̂(3)
n = (1 + R̂)

(

−
√
s2 + ω2 − iβ1h

4ω5 + β2h
3ω4

1 + R̂

)

+O
(

(|ω|+ |s|)6h5
)

= (1 + R̂)
(

−
√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4)

)

+O
(

(|ω|+ |s|)6h5
)

.

By neglecting the O(h5) term and transforming back to physical space, the boundary

condition D
(3)
n u = 0 corresponds to

(1 +R)

(

∂u

∂n
− β1h4

∂5u

∂σ5
− β2h3

∂4u

∂σ4

)

= 0.
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By assumption, ‖R‖ is small and the boundary condition can only be satisfied if the term
following (1+R) is zero. After changing spatial variables, n→ x and σ → y, we arrive at
the modified equation model corresponding to the discrete half-plane problem (50)-(51)
in domains where the normal is not aligned with the mesh:

utt = uxx + uyy − αh3utyyyy, α ≥ 0, x ≥ 0, −∞ < y <∞, (58)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, |u| ≤ const. (59)

We have added a dissipation term to the differential equation because we shall need it
later. Note that we have only added dissipation in the tangential direction, to avoid
having to add any extra boundary conditions.

After Fourier transforming in y and Laplace transforming in t we obtain

ûxx = (s2 + ω2)û+ saû, a = αh3ω4, Re s > 0, (60)

with boundary conditions

ûx(0) = bû(0), |û| ≤ const. , b = iβ1ω
5h4 + β2ω

4h3. (61)

As |ω| becomes larger, the Fourier symbol of the second divided difference, − 4
h2 sin

2
(

ωh
2

)

,
deviates more and more from the Fourier symbol of a second derivative, −ω2. In partic-
ular, for the highest frequency on the mesh (ωh = π), the symbol of the second divided
difference is −4/h2, while the symbol of the second derivative is −π2/h2. Hence, the
highest frequencies on the mesh are not accurately modeled by the modified equation.
We therefore restrict the following analysis to |ωh| ≤ 1.

The general solution of (60) is given by

û = σ1e
λx + σ2e

−λx, (62)

where λ now satisfies
λ =
√
s2 + ω2 + sa, Reλ ≥ 0. (63)

Since Reλ > 0 for Re s > 0, the boundary conditions are satisfied if and only if

σ1 = 0, λ = −b = −(iβ1ω5h4 + β2ω
4h3). (64)

There are two possibilities:

1. If β2 ≥ 0, then there are no solutions of (64) with Re s > 0 since Reλ > 0, but
Re (−b) ≤ 0. Furthermore, when the dissipation coefficient α > 0, Reλ > 0 also for
Re s = 0, ω 6= 0. Hence, there are no generalized eigenvalues when α > 0 and we
conclude that the half-plane problem is stable.

2. If β2 < 0, then the problem can be unstable. We want to show that if |β1| and |β2|
are small, the problem can be stabilized by a small α > 0.
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Theorem 3 If β2 < 0, |β2| ¿ 1, |β1| ¿ 1 and α ≥ K|β1β2|, K = const., the modi-
fied half-plane problem (58)-(59) is stable, i.e., the eigenvalue problem (60)-(61) has no
solutions with Re s > 0 and no generalized eigenvalues Re s = 0 for ω 6= 0.

Proof. Introducing (64) into (63) gives

s2 + sa+ ω2 − b2 = 0.

Since |ωh| ≤ 1, |a| ≤ |α||ω|. If we assume 0 ≤ α ≤ 1, we have |a| ≤ |ω| and ω2 − a2/4 ≥
3ω2/4. Therefore,

s = −a
2
± i
√

(

ω2 − a2

4

)

√

1− b2

ω2 − a2/4 . (65)

By assumption |b2| ¿ ω2. We can therefore expand the square root and conclude that

s = −a
2
±
(

i

√

(

ω2 − a2

4

)

− ib2

2
√

ω2 − a2/4
+ . . .

)

.

Hence,

Re s ≈ −α
2
h3ω4 ± Im b2

2
√

ω2 − a2/4
= −α

2
h3ω4 ± β1β2(ωh)

7ω2
√

ω2 − a2/4
< 0

for α ≥ 4|β1β2|/
√
3.

We have numerically computed the truncation error coefficients β1 and β2 for our
boundary condition approximation. To conserve space, we will only report the result
of these computations here. For all possible directions of the boundary normal and all
permissible distances between the ghost point and the boundary, we found that −0.065 <
β2 < 0.015 and −0.063 < β1 < 0.063. It is critical that |β2| is small since the case
β2 < 0, |β2| = O(1) can not be stabilized by adding a dissipative term to the differential
equation. In earlier versions of our numerical code we added a tangential smoothing
operator to the boundary condition approximation. In terms of the modified problem
this means that β2 > 0. The dissipation operator proposed in Section 1 seems to be so
efficient that this extra smoothing operator is not needed.

6 The two-dimensional strip problem

We here generalize the modified equation approach to study the stability of solutions on
a bounded domain,

utt = uxx + uyy − αh3utyyyy, α ≥ 0, 0 ≤ x ≤ 1, −∞ < y <∞, (66)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, ux = 0, x = 1. (67)
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Remark: In reality the boundary condition at x = 1 also contains truncation order
terms, but the results are the same.

After Fourier and Laplace transforming the problem, (66)-(67) becomes

s2û = ûxx − (ω2 + as)û, a = αh3ω4, (68)

ûx(0) = bû(0), ûx(1) = 0, b = iβ1ω
5h4 + β2ω

4h3. (69)

The general solution of (68) now has the form

û = σ1e
λx + σ2e

−λx (70)

where λ is the solution of (63), i.e., Reλ > 0 for Re s > 0. Introducing (70) into (69)
shows that there is a nontrivial solution if and only if

λ− b
λ+ b

= e2λ. (71)

We have already studied the corresponding half-plane problem and shown that for β2 ≥ 0,
there are no eigenvalues s, with Re s > 0 and that there are no generalized eigenvalues
when α > 0. For β2 < 0, Theorem 3 shows when the half-plane problem is stable. Hence,
it can be expected that the strip problem also is stable. In Appendix B, we perform a
detailed calculation to verify the stability of the strip problem. From this calculation, we
can also read off the order of magnitude of the dissipation coefficient α that is necessary
for stability. The results are summarized in

Theorem 4 If the half-plane problem (58) - (59) is stable, the modified strip problem
(66) - (67) is stable for α > 0, α = O(h3/4).

7 General two-dimensional domains

In this section, we will add some details to our proposed scheme that were left out from
the general description in Section 1.

7.1 Near boundary behavior of the discretized Laplacian

The discretized Neumann boundary condition (3) can be used to eliminate all ghost point
values in the discretized Laplacian (2). Referring to the case shown in Figure 1, we get
at the point (i, j + 1),

∆hv
n
i,j+1 =

1

h2
(vni+1,j+1 + vni−1,j+1 + vni,j+2 − 4vni,j+1)−

gI
h2g0

(c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1)−

gII
h2g0

(c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2) +

f(xΓ
i,j , tn)

h2g0
, (72)
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N ‖eI‖∞ ‖h3AT
u‖∞ h

171 3.43× 10−4 4.36× 10−2 2.82× 10−2

341 9.21× 10−5 2.20× 10−2 1.41× 10−2

681 2.40× 10−5 1.20× 10−2 7.06× 10−3

Table 1: Smoothing properties of the operator A investigated by solving Ae
I = h3AT

u for different grid
sizes for the case shown in Figure 2. Clearly, eI = O(h2) while h3AT

u = O(h).

assuming that (i, j) is the only nearest neighbor of (i, j + 1) that is outside of Ω. If
additional points are outside, other formulas of the type (3) would be used to eliminate
those points as well. The coefficients g0, gI , gII are given by (4). Since 0 ≤ ξΓ ≤ ξI and
h ≤ ξI ≤

√
2h, the denominator g0 satisfies

1

2
√
2h
≤ 1

2ξI
≤ |g0| ≤

3

2ξI
≤ 3

2h
.

Because the coefficient g0 in (72) is bounded away from zero, we conclude that this
discretization of the Laplacian does not suffer from “small cell” stiffness problem.

7.2 Accuracy of the damped scheme

For simplicity, let the grid function v satisfy the semi-discrete problem, where time is left
continuous,

vtt = Av + b + F − αh3AT (Avt + bt) ,

Let the error in the discrete solution be e = u−v, where u is the solution of the continuous
problem (1) evaluated on the grid. We have

ett = ∆u− Av − b + αh3AT (A(vt + ut − ut) + bt) .

= ∆u− Au− b + Ae− αh3ATAet + αh3AT (Aut + bt) .

We split the error according to e = e
I + e

II and let e
I satisfy

Ae
I = −αh3AT (Aut + bt) . (73)

Now, Aut + bt is a second order accurate approximation of ∆ut evaluated on the grid.
Furthermore, away from the boundary, AT∆ut is a second order approximation of ∆2ut,
but near the boundary AT∆ut = O(∆ut/h

2). Hence the right hand side of (73) is O(h)
near the boundary but O(h3) in the interior. Due to the smoothing properties of the
elliptic operator A (see figure 2 and table 1 for a numerical example), we gain one order
of magnitude when solving for e

I , resulting in

e
I = O(h2).



22

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: Numerical test of the smoothing properties of Ae
I = h3AT

u. The left figure shows a contour
plot of the right hand side h3AT

u and the right figure shows the solution e
I for N = 171, see Table 1 for

quantitative information. In this case, the computational domain was a circle with unit radius and the
test function was ui,j = cos(xi) sin(yj). The problem was solved using the conjugated gradient algorithm.

Since the right hand side of (73) is smooth in time, we also have e
I
tt = O(h2) and Ae

I
t =

O(h). The equation for e
II is

e
II
tt = Ae

II − αh3ATAe
II
t − e

I
tt − αh3ATAe

I
t +∆u− (Au+ b).

Because Au+ b is a second order accurate approximation of ∆u and h3ATAe
I
t = O(h2),

all forcing terms are of the order O(h2). Hence

e
II = O(h2),

which shows that the damped scheme is second order accurate.

7.3 Fourth order corrections

To reduce the phase-error away from the boundary, we can optionally add a fourth order
correction term

∆h,4v
n
i,j = −

h2

12

(

Dx
+D

x
−γi,jD

x
+D

x
− +Dy

+D
y
−γi,jD

y
+D

y
−
)

vni,j ,

to our second order accurate approximation of the Laplacian. Clearly, this stencil is too
wide to be evaluated all the way up to the boundary, so the grid function γi,j must be
identically zero in a band near the boundary. Away from the boundary we want γi,j ≡ 1
to make the correction term cancel the second order truncation error in ∆hvi,j. To aid
in the construction of γi,j , we initially compute a smoothed distance function di,j ≥ 0
using the technique described in [16]. The value of the distance function at a grid point
approximately equals the distance between that grid point and the nearest boundary.
Hence, the distance function is zero on the boundary and increases monotonically away
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from the boundary, making it straight forward to construct a smooth γi,j that is zero near
the boundary (di,j ≤ ε1) and one away from the boundary (di,j ≥ ε2). In all numerical
examples presented below, we used ε1 = 3h and ε2 = 13h. The resulting scheme can be
written in semi-discrete form as

vtt = Av +Bv + F + b− αh3AT

(

Avt +
db

dt
(tn)

)

, (74)

where B represent the fourth order correction term. The symmetry of B and the smooth-
ness of the distance function of γi,j seems to give stability. A heuristic argument for this
is that B can not generate any boundary layer instability, since this type of instability
decays rapidly away from the boundary and in this region ∆h,4v

n
i,j is arbitrary small. And

the other type of instability discussed above, highly oscillatory in the whole domain, is ef-
fectively stabilized by our damping term. The smoothness of the distance function imply
that no new spurious solutions are generated. The smoothness furthermore guarantees
accuracy of order two in the transition region. Hence, the resulting scheme will only be
second order accurate. The main benefit of the fourth order spatial correction will be a
reduced phase error away from the boundary. For this reason we will call the resulting
scheme the “internally fourth order” method.

We can also improve the basic second order time-integration method by using a fourth
order accurate Taylor series method. Consider the second order system of ODE’s

wtt = Cw + F ,

where C is a symmetric negative semi-definite matrix. A fourth order time-discretization
is given by

w
n+1 − 2wn + w

n−1

k2
= Cw

n + F
n +

k2

12
(C(Cw

n + F
n) + F

n
tt) , (75)

and it is stable for
max

j
(−λj)k

2 < 12,

where λj are the real-valued non-positive eigenvalues of C. The scheme (75) can be
formulated in predictor-corrector form,

w̃
n+1 = 2wn −w

n−1 + k2Cw
n + k2F n, (76)

w
n+1 = w̃

n+1 +
k2

12

(

C(w̃n+1 − 2wn + w
n−1) + k2F n

tt

)

. (77)

Hence, the predictor step (76) is simply the second order time-integration scheme pre-
sented above. The discrete damping term is added to the predictor-corrector scheme in
the same way as in (6). For the spatially fourth order method, we take C = A+B, oth-
erwise C = A. We note that the corrector step (77) needs only a second order accurate



24

approximation of wtt. Hence, from an accuracy standpoint we can omit the damping
term and always take C = A in this step. Numerical experiments, see Section 8, indicate
that the resulting scheme is stable.

We start the time-integration at n = 0. For the fourth order time-discretization, we
take v0i,j = u0(xi, yj) and need to use a fifth order accurate approximation of u(xi, yj,−k)
for v−1i,j . This is achieved by using the differential equation to approximate higher order
time derivatives,

v−1i,j = u0(xi, yj)− ku1(xi, yj) +
k2

2

(

Dx
+D

x
− +Dy

+D
y
−
)

u0(xi, yj) +
k2

2
F (xi,j, 0)

− k3

6
(Dx

+D
x
− +Dy

+D
y
−)u1(xi, yj)−

k3

6
Ft(xi,j , 0)

− k2h2

24

(

(Dx
+D

x
−)

2 − (Dy
+D

y
−)

2
)

u0(xi, yj)

+
k4

24
(Dx

+D
x
− +Dy

+D
y
−)

2u0(xi, yj) +
k4

24
Ftt(xi,j , 0). (78)

Note that the last three lines can be omitted for the second order time-discretization.

8 Numerical examples

In this section we numerically solve (1) with the schemes described above. For the cases
where an analytical solution is known, we use this solution to initialize the computation
at time levels t = −k and t = 0. For the cases where an analytical solution is not known
we use the initialization (78).

We will denote the CFL-number by CFL≡ k/h. Note that for a two-dimensional
periodic domain, our second order time-integration scheme (6) is stable for CFL ≤
1/
√
2 ≈ 0.71 while the fourth order predictor-corrector scheme (76),(77) is stable for

CFL ≤
√

3/2 ≈ 1.22. Also note that all errors are measured in max-norm.
In all examples presented below, the fourth order predictor-corrector time-integrator

(76),(77) is used together with the internally fourth order spatial correction. The second
order scheme (6) is always used together with the second order spatial discretization.
Unless otherwise noted, the Neumann boundary condition is discretized using the third
order accurate formula to reduce the constant in the second order truncation error, as
was mentioned in the introduction.

To evaluate the accuracy of the method, the forcing functions is chosen such that the
exact solution is the trigonometric traveling wave:

u(x, y, t) = sin(ω(x− t)) sin(ωy), ω = 4π. (79)

The domain Ω is taken to be an ellipse centered at the origin with semi-axes xs = 1 and
ys = 0.75. The Cartesian grid covers the rectangle −1.1 ≤ x ≤ 1.1, −0.85 ≤ y ≤ 0.85.
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2’nd order scheme Predictor-corrector scheme

t α N = 101 N = 201 ratio N = 101 N = 201 ratio

2.0 0.0 8.75e-02 2.10e-02 4.17 10.7e-02 2.17e-02 4.93

2.0 0.001 8.77e-02 2.10e-02 4.18 10.7e-02 2.17e-02 4.93

Table 2: Grid refinement study showing the errors in the computed solutions when the exact solution
is the trigonometric function (79). Here, CFL=0.5 for the second order scheme and CFL=1.0 for the
internally fourth order predictor-corrector scheme. The grid size N = 101 corresponds to h = 2.4× 10−2

and N = 201 corresponds to h = 1.2× 10−2. The first line corresponds to the undamped case, α = 0 and
the second line shows the damped case with α = 0.001.

In Table 2, we present a grid refinement study for the second order scheme (6) and the
internally fourth order predictor-corrector scheme (76),(77). The fourth order correction
only applies in the interior of the domain, and the second order errors near the boundary
clearly dominates the total error. Hence, in this case, there is no apparent benefit of using
the internally fourth order method. The time step can be taken twice as large, but this
gain is balanced by having to evaluate the Laplacian twice instead of once per time step.
Also note that the influence of the damping term is so small that it only changes the last
digit in the error in one of these runs.

To more clearly illustrate the benefits of using a fourth order correction away from
the boundary, we select the forcing function F and boundary data f such that the exact
solution is a spatially localized, outwardly traveling wave,

u(x, y, t) = φ(
√

x2 + y2 − t), φ(ξ) =
1

2

(

1 + tanh
ξ − ξ0
ε

)(

1− tanh
ξ − ξ1
ε

)

. (80)

Note that such waves are exact solutions to the unforced wave equation in one and three
space dimensions, but not in the two-dimensional case. The domain Ω is taken to be the
circle, |r| ≤ 1.5, and the Cartesian grid covers the square −1.6 ≤ x ≤ 1.6, −1.6 ≤ y ≤ 1.6.
The parameters in φ are taken to be

ξ0 = 0.3, ξ1 = 0.5, ε = 0.07.

The wave reaches the boundary at t ≈ 0.8. In Table 3 we see that for the internally fourth
order method, the error is at least one order of magnitude smaller and the convergence
rate is much higher before the wave hits the boundary. No such distinction can be made
for the second order method, where the errors grow more gradually in time. Furthermore,
the errors in the internally fourth order method are substantially smaller than those of
the second order method, especially before the wave hits the boundary.

We proceed by investigating the long time stability properties of the method. We take
the domain to be the same ellipse used above, and take the forcing functions such that
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2’nd order scheme Predictor-corrector scheme

t N = 201 N = 401 ratio N = 201 N = 401 ratio

0.5 3.29e-2 8.63e-3 3.8 1.23e-3 8.78e-5 14.0

0.75 4.59e-2 1.23e-2 3.7 1.73e-3 1.26e-4 13.7

1.0 1.05e-1 3.12e-2 3.4 2.71e-2 3.23e-3 8.4

1.25 5.89e-2 1.73e-2 3.4 1.76e-2 2.53e-3 6.9

Table 3: Grid refinement study showing the errors in the computed solutions when the exact solution is
the outwardly traveling wave function (80). Here, CFL=0.5 for the second order scheme and CFL=1.0
for the predictor-corrector scheme. The grid size N = 201 corresponds to h = 1.8 × 10−2 and N = 401
corresponds to h = 9.0× 10−3. In all cases, the damping coefficient was α = 10−3.
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Figure 3: The max norm of the error in the solution as function of time. The second order scheme (6)
was run at CFL=0.5 (left), and the predictor-corrector method (76),(77) was run at CFL=1.0 (right).
Note that to stabilize the solution, the damping coefficient had to be slightly larger for the second order
scheme (2× 10−3) than the predictor-corrector method (1.5× 10−3).

the exact solution is the trigonometric traveling wave (79). In Figure 3, we show the error
in the solution as function of time, for different values of α and for different grid sizes.
We conclude that it is sufficient to take α = 2 × 10−3 for both the second order and the
predictor-corrector scheme. Note that these computations integrated the solution for long
times. In particular, the second order scheme on the finer grid (N = 401) required 66,666
time steps to reach t = 200. Also note that there is no long-time increase in the error,
which indicates that the damping is very mild.

We next study the homogeneous problem

F (x, t) ≡ 0, f(x, t) ≡ 0,

in a domain bounded by an ellipse centered at the origin, with semi-axes xs = 2.0 and
ys = 2.54. The Cartesian grid covers the square −2.1 ≤ x ≤ 2.1, −2.64 ≤ y ≤ 2.64. We
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take initial data to be
u0(x, y) = φ(

√

x2 + (y − yF )2),
where φ(ξ) is given by (80). The upper focal point is located at yF =

√

y2s − x2s ≈ 1.56
and

u1(x) = −φ′(
√

x2 + (y − yF )2).
The parameters in φ(ξ) are

ξ0 = 0.2, ξ1 = 0.4, ε = 0.035.

Note that the initial data is chosen such that the wave is essentially traveling radially
outwardly from the focal point (0, yF ). By making a ray-tracing argument, we see that
a high frequency wave should reflect the boundary and re-focus at the other focal point
(0,−yF ). This was verified for the Dirichlet problem in [2] (Figure 6). For the Neumann
boundary condition, we should get a similar behavior, except that the solution should
have the opposite phase compared to the Dirichlet case. This is confirmed in Figure
4, where we show a well-resolved calculation using the predictor-corrector scheme with
N = 801 and CFL=1.0. It is interesting to use this calculation as a yard-stick to compare
the quality of the solutions from both schemes at a lower resolution, N = 401, see Figure 5
and 6. Observe the more pronounced over and undershoots for the second order method in
comparison to the predictor-corrector method, indicating that the phase-error dominates
at the time of comparison. In all these calculations, the damping coefficient was α = 0.001.

While all theory and all numerical experiments up to this point have been presented for
the third order accurate discretization of the boundary conditions, our practical experience
with the second order boundary condition stencil is at least as good. The advantage of
the second order stencil is that it uses fewer internal points, which becomes important
for thin or marginally resolved geometries. However, near true corners, the second order
boundary condition needs to be modified to avoid using grid points where the solution
is undefined, see Figure 7. To avoid this problem, all grid points are first scanned in a
preprocessing step to detect interior points within

√
2h of corners. All such points that

also have at least two exterior nearest neighbors, get marked with a ’-1’. The boundary
condition stencil at ghost points neighboring a ’-1’ point is then modified to be a divided
difference between the ghost point and the ’-1’ point, i.e., the direction of the normal is
locally changed to be either vertical or horizontal. As a consequence, no undefined points
are involved in the boundary stencil near the corner and the resulting contribution to the
discretized Laplace operator (the matrix A) will be locally symmetric.

While the modified boundary condition approximation will be at most first order
accurate near each corner, it is not clear what impact that truncation error has on the
accuracy of the solution. We are also interested in the long-time stability of the resulting
scheme. To investigate these issues, we take the domain to be a square with side length
2, rotated 10 degrees relative to the grid directions. In rotated coordinates x̃ = x cos(θ)+
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Figure 4: Contours of the bouncing wave solution to the Neumann problem. Here a reference solution
is produced with the predictor-corrector scheme, CFL=1.0, N = 801, t = 3.12(left) and t = 4.41(right).
The dashed line is the boundary and the contour spacing is 0.2.
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Figure 5: Contours of the bouncing wave solution to the Neumann problem. The second order scheme
is used with CFL= 0.5(left) and the predictor-corrector scheme is used with CFL= 1.0(right). Here
N = 401, t = 4.41, and the contour spacing is 0.2.
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the second order scheme is for N = 401, CFL=0.5(’+’) and the predictor-corrector scheme is for N = 401,
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Figure 7: The standard second order boundary condition stencil (outlined with a dash-dotted line) for
the ghost point at ’X’ involves the point ’O’, where the solution is undefined due to the corner. In this
case, the boundary stencil at ’X’ is reduced to a divided difference between the solution at ’-1’ and ’X’.
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Figure 8: The max norm of the error for a rotated square domain, as function of time. The ’*’ correspond
to the grid size h = 1.417×10−2, and ’+’ represent the grid size h = 7.087×10−3. The damping coefficient
was α = 2× 10−3.
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Figure 9: The geometry for the harbor model (left). The computational grid covered −1.05 ≤ x ≤ 1.05,
−0.55 ≤ y ≤ 0.55 and had 801 × 401 grid points corresponding to the grid size h = 2.6 × 10−3. The
forcing is located at the ’x’ and the signal is recorded at the ’+’. The right figure shows the lowest modes
in the discrete Fourier transform of the recorded signal, as function of the frequency. The spikes indicate
eigenfrequencies.

y sin(θ), ỹ = −x sin(θ) + y cos(θ), θ = 10π/180, an exact solution of the homogeneous
wave equation can be constructed using Fourier expansion. Here we take

u(x̃, ỹ, t) = sin

(

πx̃

2

)

sin

(

3πỹ

2

)

cos(ωt), ω =
π
√
10

2
,

which satisfies homogeneous Neumann conditions along x̃ = ±1 and ỹ = ±1, respectively.
The errors in the computed solutions on two grid sizes are reported in Figure 8, indicating
that the solution is almost second order accurate despite the corners. However, for reasons
not currently understood, the errors accumulate and seem to grow linearly in time.

In our last numerical example, we use the numerical method to compute the eigen-
frequencies and eigenmodes of the domain shown i Figure 9. Since the wave equation
models the propagation of small amplitude water waves, we may think of this geometry
as representing a simple harbor. Even though the grid is rather fine, the wide stencil used
by the third order boundary condition couples the solution at some ghost points near
the ends of the convex fingers protruding into the domain. By coupling we mean that at
least one of the interior points in one boundary condition stencil is also a ghost point.
Satisfying the boundary conditions at all ghost points would then require an iteration over
the ghost point values. To avoid this iterative procedure, we will instead use the second
order boundary condition, which uses fewer interior points in its stencil. For this case,
the solution does not get coupled at any ghost points. To estimate the eigenfrequencies,
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we apply a forcing to two consecutive points in space,

F (xi,j, yi,j , t) =



















Ke−(t−t0)2/ε21 , i = I1, j = J1,

−Ke−(t−t0)2/ε21 , i = I1 + 1, j = J1,

0, otherwise.

Here K = 105, ε1 = 0.07, t0 = 1.0. We choose this forcing since it is likely to have a
component along each eigenmode, except the constant mode corresponding to the zero
eigenvalue, which is present due to the Neumann boundary condition. We start the
computation from rest and integrate up to time T = 200. During the computation, the
solution is recorded at another point (Ir, Jr). This signal is then Fourier transformed in
time, after which the eigenfrequencies of the domain appear as spikes in the spectrum, see
Figure 9. Note that the frequency resolution is limited by 2π/T , so a longer computation
leads to a more accurate estimate of the eigenfrequencies. Also note that the eigenvalues
of

∆u = λu, in Ω,
∂u

∂n
= 0, on Γ,

are related to the eigenfrequencies ω through λ = −ω2.
To compute the corresponding eigenmode, we perform a second computation, where

the forcing is taken to be

F (x, y, t) = sin(ωrt)γ
′(x− x0)γ(y), γ(ξ) = e−ξ2/ε22 , x0 = −0.6, ε2 = 0.2.

The frequency of the time-harmonic forcing is chosen to obtain resonance. In this com-
putation, we take ωr = 0.90, which is the approximate location of the first spike in the
spectrum, see Figure 9. Due to resonance, the solution will be more and more dominated
by the corresponding eigenmode as time increases, assuming that the forcing is not or-
thogonal to that mode. The resulting eigenmode is shown in Figure 10 together with the
time-history of the solution in one point, which demonstrates the expected linear growth
in amplitude.

9 Conclusions

We have presented stability theory and numerical examples for a Cartesian embedded
boundary scheme that directly discretizes the second order wave equation subject to
Neumann boundary conditions, without rewriting the problem as a system of first order
equations. Since the discrete approximation of the Laplacian subject to the Neumann
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Figure 10: A contour plot of the solution at t = 62.4 approximating the eigenmode corresponding to the
eigenfrequency ωr = 0.90 (left). Here, the contour levels are equally spaced between −0.8 and 0.8. The
right figure shows the time-history of the solution at the point (x, y) = (−0.6526,−0.1976). Because of
resonance, the amplitude grows linearly in time.

boundary condition leads to a matrix A that is not symmetric, the stability theory de-
veloped in [2] does not directly apply. Indeed, numerical experiments in two-dimensional
domains indicate that the basic un-damped scheme is unstable. In the one-dimensional
case, we prove that the semi-discrete scheme is stable, thus indicating that the instability
is due to two-dimensional effects. In two dimensions, tangential derivatives are present in
the truncation error of the boundary condition, when the boundary is not aligned with
the mesh. A two-dimensional stability theory is presented that first is used to show the
de-stabilizing effect of perturbing a Neumann boundary condition by tangential deriva-
tives. The stability theory also predicts that a small fourth order dissipative term h3∆2ut

can control the de-stabilizing effects of high order tangential derivatives. The discrete
stabilization term h3ATA(un − un−1)/k is proposed for the practical computation. This
term can be evaluated all the way up to the boundary so no extra numerical boundary
conditions are necessary. After discretization in space, the system of second order ordi-
nary differential equations is integrated in time using a second or fourth order explicit
method. Improved spatial accuracy can be achieved away from the boundary by adding a
fourth order spatial correction term. Our numerical examples indicate that the resulting
scheme is second order accurate measured in max norm and that the time step can be
chosen independently of small grid cells near the boundary. Numerical experiments also
show that the amount of dissipation needed to stabilize the scheme is very small and, for
smooth boundaries, long-time computations do not show any accumulation of the error.
A simple modification of the scheme in the vicinity of corners is proposed, but more work
is needed to fully understand its implications.

Work is underway to generalize the proposed method to Maxwell’s equations written
as a system of second order wave equations, which requires more complicated boundary
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conditions to be satisfied. Further work is also planned to extend the method to three
space dimensions.

A Computing AT
u

Using standard notation for an N ×N matrix A and vectors u and v, the most straight
forward way of computing v = AT

u might be

vi =
N
∑

j=1

Aj,iuj.

However, when the matrix is sparse, it is inefficient to store all matrix elements explicitly.
If we let a

T
i denote the i’th row of A, we can write A in row form:

A =

















a
T
1

a
T
2

...

a
T
N

















, AT = (a1,a2, . . . ,aN) , (81)

and v = AT
u =

∑N
j=1 ajuj. Hence, another way of computing AT

u is by accumulating

the contributions from each column of AT , i.e., each row of A,
1. v = 0.

2. for j = 1, 2, . . . , N do v += ajuj.

Here the operator += means evaluate right hand side and add the result to the left hand
side (as it is defined in the “C” programming language).

Next consider the particular form of the matrix A = A that arises in our embedded
boundary discretization. Away from the boundary, A is defined by (2). Near the bound-
ary, outside points in the stencil get eliminated using the discretized Neumann boundary
condition, resulting in a stencil of the type (72). In general, each row of A will only have
a few non-zero entries. To simplify the notation, we define u(k, l) =: uk,l. Each row of
the matrix can then be written in sparse form as

Au|i,j =:

NZi,j
∑

k=1

a
(k)
i,j u(I

(k)
i,j , J

(k)
i,j ), (82)

where NZi,j is the number of non-zero entries for the row corresponding to grid point

(i, j), and (I
(k)
i,j , J

(k)
i,j ) is the grid point index of the k’th contribution to Au in that row.

Equation (82) represents the matrix A in a sparse row form corresponding to (81). The
operation v = AT

u can therefore be computed using the above accumulation algorithm,
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1. v = 0,

2. for all grid points (i, j) inside Ω do
for k = 1, 2, . . . , NZi,j do

v(I
(k)
i,j , J

(k)
i,j ) += a

(k)
i,j u(i, j).

We note that it is only necessary to form the sparse representation of A at interior points
where some neighbors are outside Ω. If all neighbors of (i, j) are interior, the “for k”-loop
in the second step in the accumulation algorithm can be replaced by

v(i+ 1, j) +=
u(i, j)

h2
, v(i− 1, j)+ =

u(i, j)

h2
, v(i, j)+ = −4u(i, j)

h2
,

v(i, j − 1) +=
u(i, j)

h2
, v(i, j + 1)+ =

u(i, j)

h2
.

B Proof of Theorem 4

The proof is divided into three cases: |λ| À |b|, |λ| ¿ 1, and |λ| ≤ C|b|.

Case 1, |λ| À |b|: We have (λ− b)/(λ+ b) ∼ 1. To make the modulus of the right hand
side of (71) be close to one,

λ = Niπ + λ̃, |λ̃| << 1, N ≥ 1 integer.

(Note that N = 0, i.e., |λ| ¿ 1 is treated in Case 2 below.) To first approximation in λ̃,

λ̃+ iNπ − b
λ̃+ iNπ + b

= 1 + 2λ̃.

Therefore,
λ̃+ iNπ − b = λ̃+ iNπ + b+ 2λ̃2 + 2iNπλ̃+ 2bλ̃

or
λ̃2 + (iNπ + b)λ̃+ b = 0.

Since |λ| À |b|, |b| ¿ Nπ and we can expand the roots of λ̃ in the small parameter
ε = b/Nπ, |ε| ¿ 1,

λ̃ = − iNπ + b

2
± iNπ

2

√

1− 4b

Nπ

(

i

2
− 1

Nπ
+

b

4Nπ

)

= − iNπ + b

2
±
(

iNπ + b

2
+

ib

Nπ
+O(ε2)

)

.
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Only the plus sign gives |λ̃| ¿ 1, and we have

λ = iNπ + λ̃ ≈ iNπ +
ib

Nπ
.

By solving the characteristic equation (63) for s and inserting the above expression for λ,

s = −a
2
±
√

a2

4
− ω2 −N2π2 − 2b− b2

(Nπ)2
. (83)

We assume that
0 ≤ α ≤ 1. (84)

Since |ωh| ≤ 1, we have that
|a| ≤ |ω|, (85)

so N2π2 + ω2 − a2/4 is real and positive. Because |b|/Nπ ¿ 1, we can expand the roots
of (83),

s = −a
2
± i
√

(

N2π2 + ω2 − a2

4

)

√

1 +
2b

N2π2 + ω2 − a2/4

(

1 +
b

2N2π2

)

= −a
2
±
(

i

√

(

N2π2 + ω2 − a2

4

)

+
ib

√

N2π2 + ω2 − a2/4
+ . . .

)

.

We have ib = −β1ω5h4 + iβ2ω
4h3, and N 2π2 + ω2 − a2/4 ≥ 3ω2/4, so

Re s ≈ −1

2
αh3ω4 ∓ β1ω

5h4
√

N2π2 + ω2 − a2/4
≤ −1

2
αh3ω4 +

2|β1|ω4h4√
3

. (86)

Therefore, Re s < 0 for α ≥ 4|β1|h/
√
3, and we conclude that there can be no exponen-

tially growing solutions with |λ| À |b|, when α exceeds that value.

Case 2, |λ| ¿ 1: If |λ| ¿ 1, we can replace (71) by

λ− b
λ+ b

= 1 + 2λ,

i.e.,
λ2 = −b+O(b3/2). (87)

Then (63) gives us

s = −a
2
±
√

a2

4
− ω2 + λ2 ≈ −a

2
±
√

a2

4
− ω2 − iβ1ω5h4 − β2ω4h3, (88)
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and by making the same expansion as above we obtain

Re s ≈ −1

2
αh3ω4 ± |β1|ω

4h4√
3

.

Hence, in this case, Re s < 0 for α > 2|β1|h/
√
3, and there can be no exponentially

growing solutions with |λ| ¿ 1 when α satisfies that inequality. Note that (87) implies
that |b| ¿ 1 when |λ| ¿ 1.

Case 3, |λ| ≤ C|b|: From Case 2 above, we know that |b| ¿ 1 when |λ| ¿ 1. We can
therefore assume |b| ≥ δ1 > 0. Since |b| = ω4h3

√

β22 + β21ω
2h2 and |ωh| ≤ 1,

c1h
−3/4 ≤ |ω| ≤ h−1. (89)

Let us define a complex number ρ such that

λ+ b = ρb, (90)

that is, |ρ− 1| ≤ C. There are two possibilities:

a) |ρ| ≥ δ > 0, b) |ρ| ≤ ε¿ 1.

For possibility a), we start by deriving a bound for Reλ. Let λr = Reλ and λi = Imλ.
From (71)

e2λr =

∣

∣

∣

∣

λ+ b− 2b

λ+ b

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

2b

λ+ b

∣

∣

∣

∣

= 1 +
2

|ρ| ≤ 1 +
2

δ
,

and therefore

λr ≤
1

2
log

(

1 +
2

δ

)

= c2. (91)

By solving the characteristic equation (63) for s, we have

s = −a
2
±
√

a2

4
− ω2 − λ2i + 2iλiλr + λ2r.

Since (89) bounds |ω| from below, λ2r ¿ ω2. Hence, we can neglect this term, expand the
roots of s as before, and use (91) to get

Re s ≤ −1

2
αh3ω4 +

c2|λi|
√

3
4
ω2 + λ2i

.

Let ρr = Re ρ and ρi = Im ρ. The relation (90) gives λi = ξω4h3, where the real valued
coefficient ξ = ρiβ2 + (ρr − 1)β1ωh. Clearly, for all |ρ| ≥ δ and |ωh| ≤ 1,

|λi|
√

3
4
ω2 + λ2i

=
|ξ||ωh|3

√

3
4
+ ξ2ω6h6

≤ c3|ωh|3.
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Since |ω| is bounded from below by (89), Re s < 0 for α > 2c2c3c
−1
1 h3/4.

For possibility b), we exploit that Reλ > 0 for Re s > 0. We have

λ = −b(1− ρ), |ρ| ¿ 1. (92)

When ρ = 0, this case reverts to (64) and the half-plane problem. For β2 > 0, Re (−b) =
−β2ω4h3 < 0, but Reλ > 0 for Re s > 0, which is contradicted by (92). Hence there are
no solutions with Re s > 0 when β2 > 0. When β2 < 0, β1 ¿ 1, |β2| ¿ 1, Theorem 3
applies and the problem can be stabilized by a small amount of dissipation α ≥ K|β1β2|.

For the perturbed case, |ρ| = ε, ε¿ 1, a simple computation yields

Re (−b+ ρb) = (−1 + ρr)β2ω
4h3 − ρiβ1ω5h4,

and Re (−b+ ρb) < 0 if (−1 + ρr)β2 + |ρiβ1| < 0, i.e.,

β2 >
|ρi|

1− ρr
|β1| ≈ ε|β1|. (93)

Hence, when |ρ| ≤ ε, there can not be any solutions with Re s > 0 when (93) is satisfied.
For β2 < ε|β1|, we can apply the same expansion as in Theorem 3 for the half-plane
problem. Since λ is perturbed by ρb = O(ε), the roots of s can only be perturbed by O(ε)
and the amount of dissipation necessary to stabilize the problem remains essentially the
same.

This concludes the proof of Theorem 4.
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